File size: 14,843 Bytes
6d15327 cb69d8f 6d15327 cb69d8f 6d15327 0dbb2c9 6d15327 f284dcb 6d15327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import gradio as gr
import torch
from transformers import (
AutoModel,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import load_dataset
from huggingface_hub import HfApi, login, whoami
import os
from datetime import datetime
import json
import pickle
from pathlib import Path
# Custom Trainer for CoDA model
class CoDATrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
"""
Custom loss computation for CoDA diffusion model.
CoDA returns a dict with 'loss' key instead of a scalar.
"""
outputs = model(**inputs)
# CoDA model returns a dict with 'loss' key
if isinstance(outputs, dict) and 'loss' in outputs:
loss = outputs['loss']
elif hasattr(outputs, 'loss'):
loss = outputs.loss
else:
# Fallback: compute standard LM loss
labels = inputs.get('labels')
logits = outputs.get('logits') if isinstance(outputs, dict) else outputs[0]
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
# Ensure loss is a scalar
if loss.dim() > 0:
loss = loss.mean()
return (loss, outputs) if return_outputs else loss
def preprocess_conversations(examples, tokenizer):
"""Convert ChatML-style conversations to text for training"""
texts = []
for conv in examples['conversations']:
# Format: [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
if not isinstance(conv, list):
raise ValueError(f"Expected conversation to be a list, got {type(conv)}")
text = ""
for message in conv:
if not isinstance(message, dict):
raise ValueError(f"Expected message to be a dict, got {type(message)}")
role = message.get('role', '')
content = message.get('content', '')
if role == 'user':
text += f"<|user|>\n{content}\n"
elif role == 'assistant':
text += f"<|assistant|>\n{content}\n"
texts.append(text)
return tokenizer(texts, truncation=True, max_length=2048, padding=False)
# Persistent storage paths
CHECKPOINT_DIR = Path("/data/checkpoints") if Path("/data").exists() else Path("./checkpoints")
MODEL_DIR = Path("/data/models") if Path("/data").exists() else Path("./models")
CHECKPOINT_DIR.mkdir(parents=True, exist_ok=True)
MODEL_DIR.mkdir(parents=True, exist_ok=True)
STATE_FILE = CHECKPOINT_DIR / "training_state.pkl"
def save_training_state(state):
"""Save training state to persistent storage"""
with open(STATE_FILE, 'wb') as f:
pickle.dump(state, f)
def load_training_state():
"""Load training state from persistent storage"""
if STATE_FILE.exists():
with open(STATE_FILE, 'rb') as f:
return pickle.load(f)
return None
def train_model(epochs, batch_size, learning_rate, resume=False, progress=gr.Progress()):
try:
# Check for existing training state
if resume:
saved_state = load_training_state()
if saved_state:
progress(0, desc=f"Resuming from step {saved_state.get('step', 0)}...")
progress(0, desc="Initializing training...")
# Check for GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
return "β οΈ Warning: Training on CPU will be very slow. Please upgrade Space to GPU."
progress(0.1, desc="Loading model and tokenizer...")
# Load model and tokenizer
# Note: Using Instruct version which is better for fine-tuning
model_name = "Salesforce/CoDA-v0-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
# Move model to device (CoDA doesn't support device_map='auto')
if device == "cuda":
model = model.to(device)
# Set pad token if not exists
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
progress(0.2, desc="Loading dataset...")
# Load dataset
dataset = load_dataset("baseten-admin/gpt-oss120b-generated-perfectblend", split="train")
# Verify dataset has conversations column
if 'conversations' not in dataset.column_names:
return f"β Error: Dataset does not have 'conversations' column. Found columns: {dataset.column_names}"
# Preprocess dataset
progress(0.3, desc="Preprocessing dataset...")
tokenized_dataset = dataset.map(
lambda x: preprocess_conversations(x, tokenizer),
batched=True,
remove_columns=dataset.column_names
)
# Split into train/eval
train_test_split = tokenized_dataset.train_test_split(test_size=0.1, seed=42)
train_dataset = train_test_split['train']
eval_dataset = train_test_split['test']
progress(0.4, desc="Setting up training configuration...")
# Training arguments - use persistent storage
output_dir = str(MODEL_DIR / "coda-finetuned")
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
learning_rate=learning_rate,
warmup_steps=100,
logging_steps=5, # More frequent logging
logging_first_step=True,
eval_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=500,
save_total_limit=2,
fp16=True if device == "cuda" else False,
gradient_accumulation_steps=4,
gradient_checkpointing=False, # CoDA doesn't support gradient checkpointing
optim="adamw_torch",
report_to="none",
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
)
# Use standard data collator for causal language modeling
# This properly handles CoDA's internal sequence modifications
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False # Causal LM, not masked LM
)
# Initialize trainer with custom loss
trainer = CoDATrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
)
progress(0.5, desc=f"Training for {epochs} epochs...")
# Train with live logging
class ProgressCallback:
def __init__(self, progress_fn):
self.progress_fn = progress_fn
self.step = 0
def on_log(self, args, state, control, logs=None, **kwargs):
if logs:
self.step += 1
log_str = f"Step {state.global_step}: "
if 'loss' in logs:
log_str += f"loss={logs['loss']:.4f} "
if 'learning_rate' in logs:
log_str += f"lr={logs['learning_rate']:.2e}"
self.progress_fn(0.5 + (0.4 * state.global_step / state.max_steps), desc=log_str)
from transformers import TrainerCallback
class GradioProgressCallback(TrainerCallback):
def __init__(self, progress_fn):
self.progress_fn = progress_fn
def on_log(self, args, state, control, logs=None, **kwargs):
if logs and state.max_steps > 0:
log_str = f"Step {state.global_step}/{state.max_steps}: "
if 'loss' in logs:
log_str += f"loss={logs['loss']:.4f} "
if 'learning_rate' in logs:
log_str += f"lr={logs['learning_rate']:.2e}"
progress = 0.5 + (0.4 * state.global_step / state.max_steps)
self.progress_fn(progress, desc=log_str)
# Add state saving callback
class StateSavingCallback(TrainerCallback):
def on_save(self, args, state, control, **kwargs):
save_training_state({
'step': state.global_step,
'epoch': state.epoch,
'best_metric': state.best_metric
})
trainer.add_callback(GradioProgressCallback(progress))
trainer.add_callback(StateSavingCallback())
# Resume from checkpoint if exists
resume_from_checkpoint = None
if resume:
checkpoints = list(Path(output_dir).glob("checkpoint-*"))
if checkpoints:
latest_checkpoint = max(checkpoints, key=lambda x: int(x.name.split("-")[1]))
resume_from_checkpoint = str(latest_checkpoint)
progress(0, desc=f"Resuming from {latest_checkpoint.name}...")
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
progress(0.9, desc="Saving model...")
# Save final model
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
progress(1.0, desc="Training complete!")
return f"β
Training completed successfully!\nModel saved to: {output_dir}\n\nFinal training loss: {trainer.state.log_history[-1].get('loss', 'N/A')}"
except Exception as e:
return f"β Error during training: {str(e)}"
def upload_to_hub(repo_name, oauth_token: gr.OAuthToken | None, progress=gr.Progress()):
try:
if oauth_token is None:
return "β Please login first to upload the model!"
progress(0, desc="Authenticating...")
# Login with OAuth token
login(token=oauth_token.token)
user_info = whoami(oauth_token.token)
username = user_info['name']
progress(0.2, desc="Preparing model for upload...")
# Full repo ID
if not repo_name:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
repo_name = f"coda-finetuned-{timestamp}"
repo_id = f"{username}/{repo_name}"
progress(0.3, desc=f"Creating repository {repo_id}...")
# Create repo
api = HfApi()
api.create_repo(repo_id=repo_id, exist_ok=True, token=oauth_token.token, repo_type="model")
progress(0.5, desc="Uploading model files...")
# Upload folder
model_dir = "./coda-finetuned"
if not os.path.exists(model_dir):
return "β No trained model found! Please train a model first."
api.upload_folder(
folder_path=model_dir,
repo_id=repo_id,
repo_type="model",
token=oauth_token.token
)
progress(1.0, desc="Upload complete!")
return f"β
Model successfully uploaded to: https://huggingface.co/{repo_id}"
except Exception as e:
return f"β Error during upload: {str(e)}"
# Gradio UI
with gr.Blocks(title="CoDA Fine-tuning Space") as demo:
gr.Markdown("""
# π CoDA Model Fine-tuning Space
This Space fine-tunes the **Salesforce/CoDA-v0-Instruct** diffusion model on the **baseten-admin/gpt-oss120b-generated-perfectblend** dataset.
### Steps:
1. **Login** with your Hugging Face account (required for upload)
2. **Configure** training parameters
3. **Train** the model (requires GPU - upgrade Space if needed)
4. **Upload** the trained model to your account
β οΈ **Note**:
- Full fine-tuning requires significant GPU resources. Training may take several hours.
- **Checkpoints are saved every 500 steps** - you can resume if interrupted.
- For Docker: Mount `/data` volume for full persistence across container restarts.
- On Spaces: Checkpoints persist in the same session and across rebuilds with persistent storage.
""")
with gr.Row():
login_button = gr.LoginButton()
gr.Markdown("## Training Configuration")
with gr.Row():
with gr.Column():
epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Epochs")
batch_size = gr.Slider(minimum=1, maximum=8, value=2, step=1, label="Batch Size per Device")
learning_rate = gr.Slider(minimum=1e-6, maximum=1e-4, value=2e-5, step=1e-6, label="Learning Rate", info="Default: 2e-5")
resume_training = gr.Checkbox(label="Resume from last checkpoint", value=False, info="Check if training was interrupted")
with gr.Row():
train_button = gr.Button("π― Start Training", variant="primary", size="lg")
training_output = gr.Textbox(label="Training Status", lines=5)
gr.Markdown("## Upload Trained Model")
with gr.Row():
repo_name = gr.Textbox(label="Model Repository Name", placeholder="coda-finetuned-v1", info="Leave empty for auto-generated name")
with gr.Row():
upload_button = gr.Button("π€ Upload to Hugging Face Hub", variant="secondary", size="lg")
upload_output = gr.Textbox(label="Upload Status", lines=3)
gr.Markdown("""
---
### About
**CoDA (Code Diffusion with Autoregressive)** is a 1.7B parameter bidirectional diffusion model for text generation.
This Space performs full fine-tuning on conversational data in ChatML format.
**Dataset**: The training uses the `conversations` column from the dataset, which contains question-answer pairs.
**Hardware**: GPU (T4 or better) is strongly recommended. CPU training will be extremely slow.
""")
# Event handlers
train_button.click(
fn=train_model,
inputs=[epochs, batch_size, learning_rate, resume_training],
outputs=training_output
)
upload_button.click(
fn=upload_to_hub,
inputs=[repo_name, login_button],
outputs=upload_output
)
if __name__ == "__main__":
demo.launch()
|