File size: 13,040 Bytes
86d82de
 
 
 
 
 
 
 
 
 
 
 
 
9711b92
 
 
86d82de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a637f69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import gradio as gr
import whisper
import PyPDF2
import docx
from transformers import pipeline
import io
import tempfile
import os
import numpy as np

class TextSummarizer:
    def __init__(self):
        self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        # Ensure whisper uses a writable cache directory
        cache_dir = "/code/cache"
        self.whisper_model = whisper.load_model("base", download_root=cache_dir)
    
    def extract_text_from_pdf(self, pdf_file):
        """Extract text from a PDF file object"""
        try:
            reader = PyPDF2.PdfReader(pdf_file)
            text = ""
            for page in reader.pages:
                text += page.extract_text() or ""
            return text
        except Exception as e:
            return f"Error reading PDF: {str(e)}"
    
    def extract_text_from_docx(self, docx_file):
        """Extract text from a DOCX file object"""
        try:
            doc = docx.Document(docx_file)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        except Exception as e:
            return f"Error reading DOCX: {str(e)}"
    
    def process_text_file(self, txt_file):
        """Extract text from a TXT file object"""
        try:
            # The file from Gradio is a temporary file, we can read it directly
            with open(txt_file.name, 'r', encoding='utf-8') as f:
                return f.read()
        except Exception as e:
            return f"Error reading TXT file: {str(e)}"

    def transcribe_audio(self, audio_file):
        """Transcribe audio file to text using Whisper"""
        try:
            result = self.whisper_model.transcribe(audio_file)
            return result["text"]
        except Exception as e:
            return f"Error transcribing audio: {str(e)}"
    
    def summarize_text(self, text, max_length=150, min_length=50):
        """Summarize text using BART model"""
        try:
            if len(text.strip()) < 50:
                return "Text is too short to summarize."
            
            summary = self.summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)
            return summary[0]['summary_text']
        except Exception as e:
            return f"Error summarizing text: {str(e)}"
    
    def process_file(self, file, summary_length):
        """Process uploaded file and return summary"""
        if file is None:
            return "No file uploaded."
        
        file_path = file.name
        file_extension = os.path.splitext(file_path)[1].lower()

        max_length = {"Short": 100, "Medium": 150, "Long": 250}[summary_length]
        min_length = max_length // 3
        
        text_extractors = {
            ".txt": self.process_text_file,
            ".pdf": self.extract_text_from_pdf,
            ".docx": self.extract_text_from_docx,
        }

        audio_transcribers = {
            ".mp3": self.transcribe_audio,
            ".wav": self.transcribe_audio,
            ".m4a": self.transcribe_audio,
            ".flac": self.transcribe_audio,
        }

        if file_extension in text_extractors:
            text = text_extractors[file_extension](file)
        elif file_extension in audio_transcribers:
            text = audio_transcribers[file_extension](file_path)
        else:
            return f"Unsupported file format: {file_extension}"
        
        if isinstance(text, str) and text.startswith("Error"):
            return text
        
        summary = self.summarize_text(text, max_length, min_length)
        
        return f"**Original Text Length:** {len(text)} characters\n\n**Summary:**\n{summary}"

    def transcribe_stream(self, audio_chunk, current_transcript):
        """Transcribe a stream of audio chunks and append to the transcript."""
        if audio_chunk is None:
            return current_transcript, current_transcript

        try:
            sample_rate, data = audio_chunk
            # Convert from int16 to float32
            data = data.astype(np.float32) / 32768.0

            # Transcribe the audio chunk
            result = self.whisper_model.transcribe(data, fp16=False)
            new_text = result['text']
            
            updated_transcript = current_transcript + new_text + " "
            return updated_transcript, updated_transcript
        except Exception as e:
            return f"Error during transcription: {str(e)}", current_transcript

    def convert_file_to_text(self, file):
        """Extract text from any supported file format."""
        if file is None:
            return "No file uploaded for conversion."
        
        file_path = file.name
        file_extension = os.path.splitext(file_path)[1].lower()

        text_extractors = {
            ".txt": self.process_text_file,
            ".pdf": self.extract_text_from_pdf,
            ".docx": self.extract_text_from_docx,
        }

        audio_transcribers = {
            ".mp3": self.transcribe_audio,
            ".wav": self.transcribe_audio,
            ".m4a": self.transcribe_audio,
            ".flac": self.transcribe_audio,
        }

        if file_extension in text_extractors:
            return text_extractors[file_extension](file)
        elif file_extension in audio_transcribers:
            return audio_transcribers[file_extension](file_path)
        else:
            return f"Unsupported file format for conversion: {file_extension}"

def create_interface():
    summarizer = TextSummarizer()
    
    with gr.Blocks(title="Text Summarization Dashboard") as interface:
        gr.Markdown("Text Summarization Dashboard")
        gr.Markdown("Manage files, and interact with specialized AI agents for various tasks.")
        
        # State component to store the uploaded file
        uploaded_file_state = gr.State(None)

        with gr.Tabs():
            with gr.TabItem("πŸ“„ File Management & Conversion"):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### Upload File")
                        file_input = gr.File(
                            label="Select a file",
                            file_types=[".txt", ".pdf", ".docx", ".mp3", ".wav", ".m4a", ".flac"]
                        )
                        uploaded_file_name = gr.Textbox(label="Current File", interactive=False)
                        
                        def store_file(file):
                            if file:
                                return file, file.name
                            return None, "No file uploaded"
                        
                        file_input.upload(
                            fn=store_file,
                            inputs=[file_input],
                            outputs=[uploaded_file_state, uploaded_file_name]
                        )

                    with gr.Column(scale=1):
                        gr.Markdown("### Convert to TXT")
                        gr.Markdown("Supported formats for conversion to .txt: `.pdf`, `.docx`, `.mp3`, `.wav`, `.m4a`, `.flac`")
                        convert_btn = gr.Button("Convert to TXT", variant="secondary")
                        conversion_output = gr.Textbox(
                            label="Conversion Output",
                            placeholder="Converted text will appear here...",
                            lines=8,
                            interactive=False
                        )
                        
                        convert_btn.click(
                            fn=summarizer.convert_file_to_text,
                            inputs=[uploaded_file_state],
                            outputs=[conversion_output]
                        )
                        
            with gr.TabItem("✍️ Meeting Summarization"):
                gr.Markdown("### Meeting Summarization")
                gr.Markdown("Generate summaries from your meeting transcripts and other documents.")
                with gr.Row():
                    with gr.Column(scale=1):
                        summary_length = gr.Dropdown(
                            choices=["Short", "Medium", "Long"],
                            value="Medium",
                            label="Summary Length",
                            info="Short: ~300 words, Medium: ~500+ words, Long: ~1000+ words"
                        )
                        submit_btn = gr.Button("Generate Summary", variant="primary")
                    
                    with gr.Column(scale=2):
                        output = gr.Textbox(
                            label="Summary Output",
                            lines=10,
                            placeholder="Your summary will appear here..."
                        )

                with gr.Accordion("βš™οΈ Model Settings", open=False):
                    gr.Markdown("### Model Selection & Fine-Tuning")
                    gr.Markdown("Choose different models and configure their parameters.")
                    with gr.Row():
                        gr.Dropdown(
                            label="Select Summarization Model",
                            choices=["facebook/bart-large-cnn", "t5-small", "google/pegasus-xsum"],
                            value="facebook/bart-large-cnn"
                        )
                    with gr.Accordion("Fine-Tuning Options", open=False):
                        gr.Slider(label="Min Tokens", minimum=10, maximum=200, step=5, value=50)
                        gr.Slider(label="Max Tokens", minimum=50, maximum=500, step=10, value=150)
                        gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, step=0.1, value=0.7)
                        gr.Slider(label="Top-K", minimum=0, maximum=100, step=1, value=50, info="0 to disable")
                        gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.0, maximum=1.0, step=0.05, value=0.95, info="0 to disable")
                        gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.2)
                        gr.Slider(label="Number of Beams", minimum=1, maximum=8, step=1, value=4)

            with gr.TabItem("πŸ”΄ Live Meeting Recording & Summarization"):
                gr.Markdown("### Live Meeting Transcription & Summarization")
                gr.Markdown("Record audio from your microphone, get a live transcript, and generate a summary.")
                
                live_transcript_state = gr.State("")

                with gr.Row():
                    with gr.Column(scale=1):
                        audio_input = gr.Audio(
                            label="Live Audio",
                            sources="microphone",
                            streaming=True,
                        )
                    with gr.Column(scale=2):
                        live_transcript_output = gr.Textbox(
                            label="Live Transcript",
                            placeholder="Transcript will appear here...",
                            lines=15,
                        )
                
                with gr.Row():
                    with gr.Column(scale=1):
                        live_summary_length = gr.Dropdown(
                            choices=["Short", "Medium", "Long"],
                            value="Medium",
                            label="Summary Length"
                        )
                        live_summary_btn = gr.Button("Generate Summary", variant="primary")
                    
                    with gr.Column(scale=2):
                        live_summary_output = gr.Textbox(
                            label="Meeting Summary",
                            placeholder="Summary will appear here...",
                            lines=5,
                        )

                audio_input.stream(
                    fn=summarizer.transcribe_stream,
                    inputs=[audio_input, live_transcript_state],
                    outputs=[live_transcript_output, live_transcript_state],
                )

                def generate_live_summary(transcript, length_option):
                    max_len = {"Short": 100, "Medium": 150, "Long": 250}[length_option]
                    min_len = max_len // 3
                    return summarizer.summarize_text(transcript, max_length=max_len, min_length=min_len)

                live_summary_btn.click(
                    fn=generate_live_summary,
                    inputs=[live_transcript_output, live_summary_length],
                    outputs=[live_summary_output],
                )

        submit_btn.click(
            fn=summarizer.process_file,
            inputs=[uploaded_file_state, summary_length],
            outputs=output
        )
    
    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860, share=True)