Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,862 Bytes
7d0d550 d27700b 7d0d550 50c43e5 c875d85 7d0d550 1c19f0a 7d0d550 1c19f0a 73b010f 35f77a2 73b010f 0f4a1d2 73b010f 0f4a1d2 7d0d550 1c19f0a 73b010f bf237a8 0b96563 d27700b bf237a8 35f77a2 d27700b bc87f11 0b96563 35f77a2 0b96563 35f77a2 6cd9363 7d0d550 6cd9363 0b96563 c875d85 0b96563 0f4a1d2 9c44f17 0b96563 9c44f17 d87b209 35f77a2 0b96563 35f77a2 0b96563 35f77a2 0b96563 35f77a2 0b96563 35f77a2 7d0d550 d27700b 35f77a2 6cd9363 d214428 0b96563 d214428 6cd9363 d214428 6cd9363 0f4a1d2 fcb0f85 7d0d550 0f4a1d2 7d0d550 0f4a1d2 73b010f 0f4a1d2 73b010f 35f77a2 7d0d550 0f4a1d2 7d0d550 35f77a2 0b96563 35f77a2 7d0d550 6aaf210 9c44f17 35f77a2 7d0d550 d214428 7d0d550 35f77a2 6cd9363 35f77a2 d87b209 35f77a2 bf237a8 35f77a2 0b96563 35f77a2 7d0d550 0a8e8e5 0f4a1d2 e98b5fc 35f77a2 7d0d550 0f4a1d2 35f77a2 0f4a1d2 35f77a2 6cd9363 d214428 0b96563 0f4a1d2 bf237a8 0f4a1d2 35f77a2 d214428 bf237a8 0f4a1d2 bf237a8 0f4a1d2 35f77a2 d27700b d214428 0f4a1d2 6aaf210 35f77a2 bc87f11 35f77a2 bc87f11 35f77a2 0b96563 35f77a2 0b96563 35f77a2 d214428 7d0d550 0f4a1d2 7d0d550 d214428 7d0d550 84d673e 0a8e8e5 84d673e 50c43e5 9528754 73b010f 7d0d550 73b010f fb61d02 fcb0f85 6f12eee 73b010f bc87f11 73b010f 6f12eee 5c21f23 7d0d550 0a8e8e5 7d0d550 1c19f0a fb61d02 9e4971c 73b010f 7d0d550 fb61d02 7d0d550 6f12eee 7d0d550 35f77a2 fb61d02 35f77a2 6f12eee 7d0d550 c875d85 9e4971c 50c43e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import os
import re
import json
import time
import unicodedata
import gc
from io import BytesIO
from typing import Iterable
from typing import Tuple, Optional, List, Dict, Any
import gradio as gr
import numpy as np
import torch
import spaces
from PIL import Image, ImageDraw, ImageFont
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
AutoModelForImageTextToText
)
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from qwen_vl_utils import process_vision_info
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
)
steel_blue_theme = SteelBlueTheme()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on device: {device}")
print("π Loading Fara-7B...")
MODEL_ID_V = "microsoft/Fara-7B"
try:
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
except Exception as e:
print(f"Failed to load Fara: {e}")
model_v = None
processor_v = None
print("π Loading UI-TARS-1.5-7B...")
MODEL_ID_X = "ByteDance-Seed/UI-TARS-1.5-7B"
try:
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True, use_fast=False)
model_x = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
).to(device).eval()
except Exception as e:
print(f"Failed to load UI-TARS: {e}")
model_x = None
processor_x = None
print("π Loading Holo1-3B...")
MODEL_ID_H = "Hcompany/Holo1-3B"
try:
processor_h = AutoProcessor.from_pretrained(MODEL_ID_H, trust_remote_code=True)
model_h = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_H,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
except Exception as e:
print(f"Failed to load Holo: {e}")
model_h = None
processor_h = None
print("β
Models loading sequence complete.")
def array_to_image(image_array: np.ndarray) -> Image.Image:
if image_array is None: raise ValueError("No image provided.")
return Image.fromarray(np.uint8(image_array))
def get_image_proc_params(processor) -> Dict[str, int]:
ip = getattr(processor, "image_processor", None)
default_min = 256 * 256
default_max = 1280 * 1280
patch_size = getattr(ip, "patch_size", 14)
merge_size = getattr(ip, "merge_size", 2)
min_pixels = getattr(ip, "min_pixels", default_min)
max_pixels = getattr(ip, "max_pixels", default_max)
if min_pixels is None: min_pixels = default_min
if max_pixels is None: max_pixels = default_max
return {
"patch_size": patch_size,
"merge_size": merge_size,
"min_pixels": min_pixels,
"max_pixels": max_pixels,
}
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "apply_chat_template"):
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if tok is not None and hasattr(tok, "apply_chat_template"):
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
texts = []
for m in messages:
content = m.get("content", "")
if isinstance(content, list):
for c in content:
if isinstance(c, dict) and c.get("type") == "text":
texts.append(c.get("text", ""))
elif isinstance(content, str):
texts.append(content)
return "\n".join(texts)
def batch_decode_compat(processor, token_id_batches, **kw):
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "batch_decode"):
return processor.batch_decode(token_id_batches, **kw)
if tok is not None and hasattr(tok, "batch_decode"):
return tok.batch_decode(token_id_batches, **kw)
raise AttributeError("No batch_decode available on processor or tokenizer.")
def trim_generated(generated_ids, inputs):
in_ids = getattr(inputs, "input_ids", None)
if in_ids is None and isinstance(inputs, dict):
in_ids = inputs.get("input_ids", None)
if in_ids is None:
return generated_ids
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
def get_fara_prompt(task, image):
OS_SYSTEM_PROMPT = """You are a GUI agent. You are given a task and a screenshot of the current status.
You need to generate the next action to complete the task.
Output your action inside a <tool_call> block using JSON format.
Include "coordinate": [x, y] in pixels for interactions.
Examples:
<tool_call>{"name": "User", "arguments": {"action": "click", "coordinate": [400, 300]}}</tool_call>
<tool_call>{"name": "User", "arguments": {"action": "type", "coordinate": [100, 200], "text": "hello"}}</tool_call>
"""
return [
{"role": "system", "content": [{"type": "text", "text": OS_SYSTEM_PROMPT}]},
{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": f"Instruction: {task}"}]},
]
def get_localization_prompt(task, image):
guidelines = (
"Localize an element on the GUI image according to my instructions and "
"output a click position as Click(x, y) with x num pixels from the left edge "
"and y num pixels from the top edge."
)
return [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"{guidelines}\n{task}"}
],
}
]
def parse_click_response(text: str) -> List[Dict]:
actions = []
text = text.strip()
print(f"Parsing click-style output: {text}")
matches_click = re.findall(r"Click\s*\(\s*(\d+)\s*,\s*(\d+)\s*\)", text, re.IGNORECASE)
for m in matches_click:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
matches_point = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", text, re.IGNORECASE)
for m in matches_point:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
matches_box = re.findall(r"start_box=['\"]?\(\s*(\d+)\s*,\s*(\d+)\s*\)['\"]?", text, re.IGNORECASE)
for m in matches_box:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
matches_tuple = re.findall(r"(?:^|\s)\(\s*(\d+)\s*,\s*(\d+)\s*\)(?:$|\s|,)", text)
for m in matches_tuple:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
unique_actions = []
seen = set()
for a in actions:
key = (a['type'], a['x'], a['y'])
if key not in seen:
seen.add(key)
unique_actions.append(a)
return unique_actions
def parse_fara_response(response: str) -> List[Dict]:
actions = []
matches = re.findall(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
for match in matches:
try:
data = json.loads(match.strip())
args = data.get("arguments", {})
coords = args.get("coordinate", [])
action_type = args.get("action", "unknown")
text_content = args.get("text", "")
if coords and len(coords) == 2:
actions.append({
"type": action_type, "x": float(coords[0]), "y": float(coords[1]), "text": text_content
})
except Exception as e:
print(f"Error parsing Fara JSON: {e}")
pass
return actions
def create_localized_image(original_image: Image.Image, actions: list[dict]) -> Optional[Image.Image]:
if not actions: return None
img_copy = original_image.copy()
draw = ImageDraw.Draw(img_copy)
try:
font = ImageFont.load_default(size=18)
except IOError:
font = ImageFont.load_default()
for act in actions:
x = act['x']
y = act['y']
pixel_x, pixel_y = int(x), int(y)
color = 'red' if 'click' in act['type'].lower() else 'blue'
r = 20
line_width = 5
draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r], outline=color, width=line_width)
draw.ellipse([pixel_x - 4, pixel_y - 4, pixel_x + 4, pixel_y + 4], fill=color)
label = f"{act['type'].capitalize()}"
if act.get('text'): label += f": \"{act['text']}\""
text_pos = (pixel_x + 25, pixel_y - 15)
try:
bbox = draw.textbbox(text_pos, label, font=font)
padded_bbox = (bbox[0]-4, bbox[1]-2, bbox[2]+4, bbox[3]+2)
draw.rectangle(padded_bbox, fill="black", outline=color)
draw.text(text_pos, label, fill="white", font=font)
except Exception as e:
draw.text(text_pos, label, fill="white")
return img_copy
@spaces.GPU
def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: str):
if input_numpy_image is None: return "β οΈ Please upload an image.", None
if not task.strip(): return "β οΈ Please provide a task instruction.", None
input_pil_image = array_to_image(input_numpy_image)
orig_w, orig_h = input_pil_image.size
actions = []
raw_response = ""
if model_choice == "Fara-7B":
if model_v is None: return "Error: Fara model failed to load on startup.", None
print("Using Fara Pipeline...")
messages = get_fara_prompt(task, input_pil_image)
text_prompt = processor_v.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor_v(
text=[text_prompt],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to(device)
with torch.no_grad():
generated_ids = model_v.generate(**inputs, max_new_tokens=512)
generated_ids = trim_generated(generated_ids, inputs)
raw_response = processor_v.batch_decode(generated_ids, skip_special_tokens=True)[0]
actions = parse_fara_response(raw_response)
else:
if model_choice == "UI-TARS-1.5-7B":
model, processor = model_x, processor_x
if model is None: return "Error: UI-TARS model failed to load.", None
print("Using UI-TARS Pipeline...")
elif model_choice == "Holo1-3B":
model, processor = model_h, processor_h
if model is None: return "Error: Holo2-8B model failed to load.", None
print("Using Holo1-3B Pipeline...")
else:
return f"Error: Unknown model '{model_choice}'", None
ip_params = get_image_proc_params(processor)
resized_h, resized_w = smart_resize(
input_pil_image.height, input_pil_image.width,
factor=ip_params["patch_size"] * ip_params["merge_size"],
min_pixels=ip_params["min_pixels"],
max_pixels=ip_params["max_pixels"]
)
proc_image = input_pil_image.resize((resized_w, resized_h), Image.Resampling.LANCZOS)
messages = get_localization_prompt(task, proc_image)
text_prompt = apply_chat_template_compat(processor, messages)
inputs = processor(text=[text_prompt], images=[proc_image], padding=True, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = trim_generated(generated_ids, inputs)
raw_response = batch_decode_compat(processor, generated_ids, skip_special_tokens=True)[0]
actions = parse_click_response(raw_response)
if resized_w > 0 and resized_h > 0:
scale_x = orig_w / resized_w
scale_y = orig_h / resized_h
for a in actions:
a['x'] = int(a['x'] * scale_x)
a['y'] = int(a['y'] * scale_y)
print(f"Raw Output: {raw_response}")
print(f"Parsed Actions: {actions}")
output_image = input_pil_image
if actions:
vis = create_localized_image(input_pil_image, actions)
if vis: output_image = vis
return raw_response, output_image
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks() as demo:
gr.Markdown("# **CUA GUI Operator π₯οΈ**", elem_id="main-title")
gr.Markdown("Upload a screenshot, select a model, and provide a task. The model will determine the precise UI coordinates and actions.")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Upload UI Image", type="numpy", height=500)
with gr.Row():
model_choice = gr.Radio(
choices=["Fara-7B", "UI-TARS-1.5-7B", "Holo1-3B"],
label="Select Model",
value="Fara-7B",
interactive=True
)
task_input = gr.Textbox(
label="Task Instruction",
placeholder="e.g. Click on the search bar",
lines=2
)
submit_btn = gr.Button("Call CUA Agent", variant="primary")
with gr.Column(scale=3):
output_image = gr.Image(label="Visualized Action Points", elem_id="out_img", height=500)
output_text = gr.Textbox(label="Agent Model Response", lines=10)
submit_btn.click(
fn=process_screenshot,
inputs=[input_image, task_input, model_choice],
outputs=[output_text, output_image]
)
gr.Examples(
examples=[
["examples/1.jpg", "Search for 'Hugging Face'", "Fara-7B"],
["examples/2.jpg", "Click on the VLMs Collection", "UI-TARS-1.5-7B"],
["examples/3.jpg", "Where is the 'I'm Feeling Lucky' button?", "Holo1-3B"],
],
inputs=[input_image, task_input, model_choice],
label="Quick Examples"
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(theme=steel_blue_theme, css=css, mcp_server=True, ssr_mode=False, show_error=True) |