File size: 16,862 Bytes
7d0d550
 
 
 
 
d27700b
7d0d550
50c43e5
 
c875d85
7d0d550
 
1c19f0a
7d0d550
 
1c19f0a
73b010f
35f77a2
73b010f
0f4a1d2
73b010f
0f4a1d2
7d0d550
1c19f0a
73b010f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf237a8
 
 
 
0b96563
d27700b
 
 
 
 
 
 
 
 
 
 
bf237a8
 
35f77a2
d27700b
 
 
 
 
 
 
 
 
 
 
 
bc87f11
0b96563
35f77a2
 
 
 
 
 
 
 
0b96563
35f77a2
 
 
6cd9363
7d0d550
6cd9363
 
 
 
0b96563
 
 
 
 
c875d85
0b96563
 
 
 
 
 
 
0f4a1d2
9c44f17
0b96563
 
 
 
9c44f17
d87b209
35f77a2
 
 
 
 
 
0b96563
35f77a2
 
0b96563
 
 
35f77a2
 
0b96563
 
35f77a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b96563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f77a2
 
7d0d550
d27700b
35f77a2
 
6cd9363
d214428
 
 
 
 
 
 
 
 
 
 
0b96563
 
 
 
d214428
6cd9363
d214428
 
6cd9363
 
 
 
 
 
0f4a1d2
 
 
 
fcb0f85
7d0d550
0f4a1d2
7d0d550
 
 
 
0f4a1d2
73b010f
0f4a1d2
73b010f
35f77a2
 
 
7d0d550
 
 
0f4a1d2
7d0d550
 
 
35f77a2
0b96563
35f77a2
 
7d0d550
6aaf210
9c44f17
 
 
35f77a2
7d0d550
d214428
7d0d550
35f77a2
 
6cd9363
 
35f77a2
d87b209
35f77a2
 
bf237a8
35f77a2
 
 
 
0b96563
 
35f77a2
 
 
7d0d550
 
 
0a8e8e5
0f4a1d2
e98b5fc
35f77a2
7d0d550
 
0f4a1d2
35f77a2
 
0f4a1d2
35f77a2
6cd9363
d214428
0b96563
0f4a1d2
bf237a8
0f4a1d2
35f77a2
d214428
 
 
 
 
 
 
bf237a8
0f4a1d2
 
bf237a8
0f4a1d2
35f77a2
d27700b
d214428
0f4a1d2
6aaf210
35f77a2
 
 
 
 
bc87f11
35f77a2
 
bc87f11
35f77a2
 
 
 
0b96563
35f77a2
 
 
0b96563
 
35f77a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d214428
 
 
7d0d550
 
0f4a1d2
 
7d0d550
d214428
7d0d550
84d673e
 
 
0a8e8e5
84d673e
 
 
50c43e5
9528754
73b010f
7d0d550
 
73b010f
fb61d02
fcb0f85
6f12eee
73b010f
bc87f11
73b010f
6f12eee
 
 
5c21f23
7d0d550
 
0a8e8e5
7d0d550
1c19f0a
fb61d02
9e4971c
73b010f
7d0d550
fb61d02
7d0d550
 
 
6f12eee
7d0d550
 
 
 
35f77a2
fb61d02
 
 
35f77a2
6f12eee
7d0d550
 
c875d85
9e4971c
50c43e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import os
import re
import json
import time
import unicodedata
import gc
from io import BytesIO
from typing import Iterable
from typing import Tuple, Optional, List, Dict, Any

import gradio as gr
import numpy as np
import torch
import spaces
from PIL import Image, ImageDraw, ImageFont

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    AutoModelForImageTextToText
)
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from qwen_vl_utils import process_vision_info

from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
        )

steel_blue_theme = SteelBlueTheme()

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on device: {device}")

print("πŸ”„ Loading Fara-7B...")
MODEL_ID_V = "microsoft/Fara-7B" 
try:
    processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
    model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        MODEL_ID_V,
        trust_remote_code=True,
        torch_dtype=torch.float16
    ).to(device).eval()
except Exception as e:
    print(f"Failed to load Fara: {e}")
    model_v = None
    processor_v = None

print("πŸ”„ Loading UI-TARS-1.5-7B...")
MODEL_ID_X = "ByteDance-Seed/UI-TARS-1.5-7B"
try:
    processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True, use_fast=False)
    model_x = AutoModelForImageTextToText.from_pretrained(
        MODEL_ID_X,
        trust_remote_code=True,
        torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
    ).to(device).eval()
except Exception as e:
    print(f"Failed to load UI-TARS: {e}")
    model_x = None
    processor_x = None

print("πŸ”„ Loading Holo1-3B...")
MODEL_ID_H = "Hcompany/Holo1-3B" 
try:
    processor_h = AutoProcessor.from_pretrained(MODEL_ID_H, trust_remote_code=True)
    model_h = AutoModelForImageTextToText.from_pretrained(
        MODEL_ID_H,
        trust_remote_code=True,
        torch_dtype=torch.float16
    ).to(device).eval()
except Exception as e:
    print(f"Failed to load Holo: {e}")
    model_h = None
    processor_h = None

print("βœ… Models loading sequence complete.")

def array_to_image(image_array: np.ndarray) -> Image.Image:
    if image_array is None: raise ValueError("No image provided.")
    return Image.fromarray(np.uint8(image_array))

def get_image_proc_params(processor) -> Dict[str, int]:
    ip = getattr(processor, "image_processor", None)
    
    default_min = 256 * 256
    default_max = 1280 * 1280

    patch_size = getattr(ip, "patch_size", 14)
    merge_size = getattr(ip, "merge_size", 2)
    min_pixels = getattr(ip, "min_pixels", default_min)
    max_pixels = getattr(ip, "max_pixels", default_max)

    if min_pixels is None: min_pixels = default_min
    if max_pixels is None: max_pixels = default_max

    return {
        "patch_size": patch_size,
        "merge_size": merge_size,
        "min_pixels": min_pixels,
        "max_pixels": max_pixels,
    }

def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
    tok = getattr(processor, "tokenizer", None)
    if hasattr(processor, "apply_chat_template"):
        return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    if tok is not None and hasattr(tok, "apply_chat_template"):
        return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    texts = []
    for m in messages:
        content = m.get("content", "")
        if isinstance(content, list):
            for c in content:
                if isinstance(c, dict) and c.get("type") == "text":
                    texts.append(c.get("text", ""))
        elif isinstance(content, str):
             texts.append(content)
    return "\n".join(texts)

def batch_decode_compat(processor, token_id_batches, **kw):
    tok = getattr(processor, "tokenizer", None)
    if hasattr(processor, "batch_decode"):
        return processor.batch_decode(token_id_batches, **kw)
    if tok is not None and hasattr(tok, "batch_decode"):
        return tok.batch_decode(token_id_batches, **kw)
    raise AttributeError("No batch_decode available on processor or tokenizer.")

def trim_generated(generated_ids, inputs):
    in_ids = getattr(inputs, "input_ids", None)
    if in_ids is None and isinstance(inputs, dict):
        in_ids = inputs.get("input_ids", None)
    if in_ids is None:
        return generated_ids
    return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]

def get_fara_prompt(task, image):
    OS_SYSTEM_PROMPT = """You are a GUI agent. You are given a task and a screenshot of the current status.
    You need to generate the next action to complete the task.
    Output your action inside a <tool_call> block using JSON format.
    Include "coordinate": [x, y] in pixels for interactions.
    Examples:
    <tool_call>{"name": "User", "arguments": {"action": "click", "coordinate": [400, 300]}}</tool_call>
    <tool_call>{"name": "User", "arguments": {"action": "type", "coordinate": [100, 200], "text": "hello"}}</tool_call>
    """
    return [
        {"role": "system", "content": [{"type": "text", "text": OS_SYSTEM_PROMPT}]},
        {"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": f"Instruction: {task}"}]},
    ]

def get_localization_prompt(task, image):
    guidelines = (
        "Localize an element on the GUI image according to my instructions and "
        "output a click position as Click(x, y) with x num pixels from the left edge "
        "and y num pixels from the top edge."
    )
    return [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": f"{guidelines}\n{task}"}
            ],
        }
    ]

def parse_click_response(text: str) -> List[Dict]:
    actions = []
    text = text.strip()

    print(f"Parsing click-style output: {text}")

    matches_click = re.findall(r"Click\s*\(\s*(\d+)\s*,\s*(\d+)\s*\)", text, re.IGNORECASE)
    for m in matches_click:
        actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})

    matches_point = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", text, re.IGNORECASE)
    for m in matches_point:
        actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})

    matches_box = re.findall(r"start_box=['\"]?\(\s*(\d+)\s*,\s*(\d+)\s*\)['\"]?", text, re.IGNORECASE)
    for m in matches_box:
        actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
    
    matches_tuple = re.findall(r"(?:^|\s)\(\s*(\d+)\s*,\s*(\d+)\s*\)(?:$|\s|,)", text)
    for m in matches_tuple:
        actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})

    unique_actions = []
    seen = set()
    for a in actions:
        key = (a['type'], a['x'], a['y'])
        if key not in seen:
            seen.add(key)
            unique_actions.append(a)
            
    return unique_actions

def parse_fara_response(response: str) -> List[Dict]:
    actions = []
    matches = re.findall(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
    for match in matches:
        try:
            data = json.loads(match.strip())
            args = data.get("arguments", {})
            coords = args.get("coordinate", [])
            action_type = args.get("action", "unknown")
            text_content = args.get("text", "")
            if coords and len(coords) == 2:
                actions.append({
                    "type": action_type, "x": float(coords[0]), "y": float(coords[1]), "text": text_content
                })
        except Exception as e:
            print(f"Error parsing Fara JSON: {e}")
            pass
    return actions

def create_localized_image(original_image: Image.Image, actions: list[dict]) -> Optional[Image.Image]:
    if not actions: return None
    img_copy = original_image.copy()
    draw = ImageDraw.Draw(img_copy)
    
    try:
        font = ImageFont.load_default(size=18)
    except IOError:
        font = ImageFont.load_default()
    
    for act in actions:
        x = act['x']
        y = act['y']
        
        pixel_x, pixel_y = int(x), int(y)
            
        color = 'red' if 'click' in act['type'].lower() else 'blue'
        
        r = 20
        line_width = 5
        
        draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r], outline=color, width=line_width)
        draw.ellipse([pixel_x - 4, pixel_y - 4, pixel_x + 4, pixel_y + 4], fill=color)
        
        label = f"{act['type'].capitalize()}"
        if act.get('text'): label += f": \"{act['text']}\""
        
        text_pos = (pixel_x + 25, pixel_y - 15)
        
        try:
            bbox = draw.textbbox(text_pos, label, font=font)
            padded_bbox = (bbox[0]-4, bbox[1]-2, bbox[2]+4, bbox[3]+2)
            draw.rectangle(padded_bbox, fill="black", outline=color)
            draw.text(text_pos, label, fill="white", font=font)
        except Exception as e:
            draw.text(text_pos, label, fill="white")

    return img_copy

@spaces.GPU
def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: str):
    if input_numpy_image is None: return "⚠️ Please upload an image.", None
    if not task.strip(): return "⚠️ Please provide a task instruction.", None

    input_pil_image = array_to_image(input_numpy_image)
    orig_w, orig_h = input_pil_image.size
    actions = []
    raw_response = ""

    if model_choice == "Fara-7B":
        if model_v is None: return "Error: Fara model failed to load on startup.", None
        print("Using Fara Pipeline...")
        
        messages = get_fara_prompt(task, input_pil_image)
        text_prompt = processor_v.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)

        inputs = processor_v(
            text=[text_prompt],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt"
        )
        inputs = inputs.to(device)
        
        with torch.no_grad():
            generated_ids = model_v.generate(**inputs, max_new_tokens=512)
            
        generated_ids = trim_generated(generated_ids, inputs)
        raw_response = processor_v.batch_decode(generated_ids, skip_special_tokens=True)[0]
        
        actions = parse_fara_response(raw_response)

    else:
        if model_choice == "UI-TARS-1.5-7B":
            model, processor = model_x, processor_x
            if model is None: return "Error: UI-TARS model failed to load.", None
            print("Using UI-TARS Pipeline...")
        elif model_choice == "Holo1-3B":
            model, processor = model_h, processor_h
            if model is None: return "Error: Holo2-8B model failed to load.", None
            print("Using Holo1-3B Pipeline...")
        else:
            return f"Error: Unknown model '{model_choice}'", None

        ip_params = get_image_proc_params(processor)
        
        resized_h, resized_w = smart_resize(
            input_pil_image.height, input_pil_image.width,
            factor=ip_params["patch_size"] * ip_params["merge_size"],
            min_pixels=ip_params["min_pixels"], 
            max_pixels=ip_params["max_pixels"]
        )
        proc_image = input_pil_image.resize((resized_w, resized_h), Image.Resampling.LANCZOS)
        
        messages = get_localization_prompt(task, proc_image)
        text_prompt = apply_chat_template_compat(processor, messages)
        
        inputs = processor(text=[text_prompt], images=[proc_image], padding=True, return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            generated_ids = model.generate(**inputs, max_new_tokens=128)
            
        generated_ids = trim_generated(generated_ids, inputs)
        raw_response = batch_decode_compat(processor, generated_ids, skip_special_tokens=True)[0]
        
        actions = parse_click_response(raw_response)
        
        if resized_w > 0 and resized_h > 0:
            scale_x = orig_w / resized_w
            scale_y = orig_h / resized_h
            for a in actions:
                a['x'] = int(a['x'] * scale_x)
                a['y'] = int(a['y'] * scale_y)

    print(f"Raw Output: {raw_response}")
    print(f"Parsed Actions: {actions}")

    output_image = input_pil_image
    if actions:
        vis = create_localized_image(input_pil_image, actions)
        if vis: output_image = vis
            
    return raw_response, output_image

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks() as demo:
    gr.Markdown("# **CUA GUI Operator πŸ–₯️**", elem_id="main-title")
    gr.Markdown("Upload a screenshot, select a model, and provide a task. The model will determine the precise UI coordinates and actions.")

    with gr.Row():
        with gr.Column(scale=2):
            input_image = gr.Image(label="Upload UI Image", type="numpy", height=500)
            
            with gr.Row():
                model_choice = gr.Radio(
                    choices=["Fara-7B", "UI-TARS-1.5-7B", "Holo1-3B"],
                    label="Select Model",
                    value="Fara-7B",
                    interactive=True
                )
            
            task_input = gr.Textbox(
                label="Task Instruction",
                placeholder="e.g. Click on the search bar",
                lines=2
            )
            submit_btn = gr.Button("Call CUA Agent", variant="primary")

        with gr.Column(scale=3):
            output_image = gr.Image(label="Visualized Action Points", elem_id="out_img", height=500)
            output_text = gr.Textbox(label="Agent Model Response", lines=10)

    submit_btn.click(
        fn=process_screenshot,
        inputs=[input_image, task_input, model_choice],
        outputs=[output_text, output_image]
    )
    
    gr.Examples(
        examples=[
            ["examples/1.jpg", "Search for 'Hugging Face'", "Fara-7B"],
            ["examples/2.jpg", "Click on the VLMs Collection", "UI-TARS-1.5-7B"],
            ["examples/3.jpg", "Where is the 'I'm Feeling Lucky' button?", "Holo1-3B"],
        ],
        inputs=[input_image, task_input, model_choice],
        label="Quick Examples"
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(theme=steel_blue_theme, css=css, mcp_server=True, ssr_mode=False, show_error=True)