Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 3 |
import tensorflow as tf
|
| 4 |
|
|
@@ -20,67 +20,5 @@ demo = gr.Interface(fn=classify_sentiment,
|
|
| 20 |
description="Multilingual BERT-based Sentiment Analysis")
|
| 21 |
|
| 22 |
demo.launch()
|
| 23 |
-
'''
|
| 24 |
-
'''
|
| 25 |
-
import gradio as gr
|
| 26 |
-
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 27 |
-
import tensorflow as tf
|
| 28 |
-
|
| 29 |
-
# Load model and tokenizer from your HF model repo
|
| 30 |
-
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 31 |
-
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
| 32 |
-
|
| 33 |
-
def classify_sentiment(text):
|
| 34 |
-
text = text.lower().strip() # Normalize input
|
| 35 |
-
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
| 36 |
-
predictions = model(inputs).logits
|
| 37 |
-
label = tf.argmax(predictions, axis=1).numpy()[0]
|
| 38 |
-
labels = model.config.id2label # Use mapping from config.json
|
| 39 |
-
print(f"Text: {text} | Prediction: {label} | Logits: {predictions.numpy()}") # Debug
|
| 40 |
-
return labels[str(label)] # Convert to string key
|
| 41 |
-
|
| 42 |
-
demo = gr.Interface(fn=classify_sentiment,
|
| 43 |
-
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
| 44 |
-
outputs="text",
|
| 45 |
-
title="Tweet Sentiment Classifier",
|
| 46 |
-
description="Multilingual BERT-based Sentiment Analysis")
|
| 47 |
-
|
| 48 |
-
demo.launch()
|
| 49 |
-
'''
|
| 50 |
-
import gradio as gr
|
| 51 |
-
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 52 |
-
import tensorflow as tf
|
| 53 |
|
| 54 |
-
# Load model and tokenizer from Hugging Face Hub
|
| 55 |
-
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 56 |
-
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
| 57 |
-
|
| 58 |
-
def classify_sentiment(text):
|
| 59 |
-
text = text.lower().strip()
|
| 60 |
-
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
| 61 |
-
outputs = model(inputs, training=False)
|
| 62 |
-
logits = outputs.logits
|
| 63 |
-
label_id = int(tf.argmax(logits, axis=1).numpy()[0])
|
| 64 |
-
|
| 65 |
-
# Handle label mapping correctly
|
| 66 |
-
raw_labels = model.config.id2label
|
| 67 |
-
if isinstance(list(raw_labels.keys())[0], str):
|
| 68 |
-
label = raw_labels.get(str(label_id), "Unknown")
|
| 69 |
-
else:
|
| 70 |
-
label = raw_labels.get(label_id, "Unknown")
|
| 71 |
-
|
| 72 |
-
print(f"Text: {text} | Label ID: {label_id} | Label: {label} | Logits: {logits.numpy()}")
|
| 73 |
-
return label
|
| 74 |
-
|
| 75 |
-
# Define the Gradio interface
|
| 76 |
-
demo = gr.Interface(
|
| 77 |
-
fn=classify_sentiment,
|
| 78 |
-
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
| 79 |
-
outputs="text",
|
| 80 |
-
title="Tweet Sentiment Classifier",
|
| 81 |
-
description="Multilingual BERT-based Sentiment Analysis"
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
# Launch the app
|
| 85 |
-
demo.launch()
|
| 86 |
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 3 |
import tensorflow as tf
|
| 4 |
|
|
|
|
| 20 |
description="Multilingual BERT-based Sentiment Analysis")
|
| 21 |
|
| 22 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|