Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 3 |
import tensorflow as tf
|
| 4 |
|
|
@@ -20,5 +20,38 @@ demo = gr.Interface(fn=classify_sentiment,
|
|
| 20 |
description="Multilingual BERT-based Sentiment Analysis")
|
| 21 |
|
| 22 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
|
|
|
| 1 |
+
'''import gradio as gr
|
| 2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 3 |
import tensorflow as tf
|
| 4 |
|
|
|
|
| 20 |
description="Multilingual BERT-based Sentiment Analysis")
|
| 21 |
|
| 22 |
demo.launch()
|
| 23 |
+
'''
|
| 24 |
+
import gradio as gr
|
| 25 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 26 |
+
import tensorflow as tf
|
| 27 |
+
|
| 28 |
+
# Load model and tokenizer from Hugging Face
|
| 29 |
+
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 30 |
+
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
| 31 |
+
|
| 32 |
+
# Manually define the correct mapping
|
| 33 |
+
LABELS = {
|
| 34 |
+
0: "Negative",
|
| 35 |
+
1: "Neutral",
|
| 36 |
+
2: "Positive"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
def classify_sentiment(text):
|
| 40 |
+
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 41 |
+
outputs = model(inputs)
|
| 42 |
+
probs = tf.nn.softmax(outputs.logits, axis=1)
|
| 43 |
+
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
| 44 |
+
confidence = float(tf.reduce_max(probs).numpy())
|
| 45 |
+
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"
|
| 46 |
+
|
| 47 |
+
demo = gr.Interface(
|
| 48 |
+
fn=classify_sentiment,
|
| 49 |
+
inputs=gr.Textbox(placeholder="Type your tweet here..."),
|
| 50 |
+
outputs="text",
|
| 51 |
+
title="Sentiment Analysis on Tweets",
|
| 52 |
+
description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative."
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
demo.launch()
|
| 56 |
|
| 57 |
|