File size: 24,460 Bytes
8f4d405
79ea999
 
8f4d405
9959ea9
8f4d405
 
 
 
 
b3aba24
 
 
9959ea9
b3aba24
 
 
9959ea9
 
 
 
 
 
 
 
 
 
b3aba24
8f4d405
 
 
 
 
79ea999
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9959ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3aba24
 
 
 
 
 
9959ea9
13fa6c4
b3aba24
 
 
9959ea9
 
b3aba24
 
13fa6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9959ea9
13fa6c4
 
 
 
 
 
 
 
67c580c
 
13fa6c4
 
 
67c580c
 
13fa6c4
 
 
 
 
 
 
 
 
 
 
9959ea9
67c580c
 
 
b3aba24
 
9959ea9
b3aba24
13fa6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67c580c
 
13fa6c4
 
 
 
67c580c
 
 
13fa6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
b3aba24
8f4d405
 
 
 
 
 
 
 
 
b3aba24
8f4d405
 
b3aba24
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3aba24
 
 
 
 
8f4d405
9959ea9
 
b3aba24
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
b3aba24
8f4d405
 
b3aba24
8f4d405
 
b3aba24
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea87e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
ea87e33
8f4d405
 
 
 
 
 
 
 
 
 
 
ea87e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# local_model_loader.py
# Local GPU-based model loading for NVIDIA T4 Medium (16GB VRAM)
# Optimized with 4-bit quantization to fit larger models
import logging
import os
import torch
from typing import Optional, Dict, Any
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer

# Import GatedRepoError for handling gated repositories
try:
    from huggingface_hub.exceptions import GatedRepoError
    from huggingface_hub import login as hf_login
except ImportError:
    # Fallback if huggingface_hub is not available
    GatedRepoError = Exception
    hf_login = None

# Import settings for cache directory and HF token
try:
    from .config import settings
except ImportError:
    try:
        from config import settings
    except ImportError:
        settings = None

logger = logging.getLogger(__name__)

class LocalModelLoader:
    """
    Loads and manages models locally on GPU for faster inference.
    Optimized for NVIDIA T4 Medium with 16GB VRAM using 4-bit quantization.
    """
    
    def __init__(self, device: Optional[str] = None):
        """Initialize the model loader with GPU device detection."""
        # Detect device
        if device is None:
            if torch.cuda.is_available():
                self.device = "cuda"
                self.device_name = torch.cuda.get_device_name(0)
                logger.info(f"GPU detected: {self.device_name}")
                logger.info(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
            else:
                self.device = "cpu"
                self.device_name = "CPU"
                logger.warning("No GPU detected, using CPU")
        else:
            self.device = device
            self.device_name = device
        
        # Get cache directory from settings
        if settings:
            self.cache_dir = settings.hf_cache_dir
            self.hf_token = settings.hf_token
        else:
            # Fallback to environment variables
            self.cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or "/tmp/huggingface"
            self.hf_token = os.getenv("HF_TOKEN", "")
        
        # Ensure cache directory exists and is writable
        os.makedirs(self.cache_dir, exist_ok=True)
        
        # Set environment variables for transformers/huggingface_hub
        if not os.getenv("HF_HOME"):
            os.environ["HF_HOME"] = self.cache_dir
        if not os.getenv("TRANSFORMERS_CACHE"):
            os.environ["TRANSFORMERS_CACHE"] = self.cache_dir
        
        logger.info(f"Cache directory: {self.cache_dir}")
        
        # Login to Hugging Face if token is provided (needed for gated repositories)
        if self.hf_token and hf_login:
            try:
                hf_login(token=self.hf_token, add_to_git_credential=False)
                logger.info("βœ“ HF_TOKEN authenticated for gated model access")
            except Exception as e:
                logger.warning(f"HF_TOKEN login failed (may not be needed): {e}")
        
        # Model cache
        self.loaded_models: Dict[str, Any] = {}
        self.loaded_tokenizers: Dict[str, Any] = {}
        self.loaded_embedding_models: Dict[str, Any] = {}
        
    def load_chat_model(self, model_id: str, load_in_8bit: bool = False, load_in_4bit: bool = False) -> tuple:
        """
        Load a chat model and tokenizer on GPU.
        
        Args:
            model_id: HuggingFace model identifier
            load_in_8bit: Use 8-bit quantization (saves memory)
            load_in_4bit: Use 4-bit quantization (saves more memory)
        
        Returns:
            Tuple of (model, tokenizer)
        """
        if model_id in self.loaded_models:
            logger.info(f"Model {model_id} already loaded, reusing")
            return self.loaded_models[model_id], self.loaded_tokenizers[model_id]
        
        try:
            logger.info(f"Loading model {model_id} on {self.device}...")
            
            # Strip API-specific suffixes (e.g., :cerebras, :novita) for local loading
            # These suffixes are typically used for API endpoints, not local model identifiers
            base_model_id = model_id.split(':')[0] if ':' in model_id else model_id
            if base_model_id != model_id:
                logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
            
            # Load tokenizer with cache directory
            # This will fail with actual GatedRepoError if model is gated
            try:
                tokenizer = AutoTokenizer.from_pretrained(
                    base_model_id,
                    cache_dir=self.cache_dir,
                    token=self.hf_token if self.hf_token else None,
                    trust_remote_code=True
                )
            except Exception as e:
                # Check if this is actually a gated repo error
                error_str = str(e).lower()
                if "gated" in error_str or "authorized" in error_str or "access" in error_str:
                    # This might be a gated repo error
                    try:
                        from huggingface_hub.exceptions import GatedRepoError as RealGatedRepoError
                        if isinstance(e, RealGatedRepoError):
                            logger.error(f"❌ Gated Repository Error: Cannot access gated repo {base_model_id}")
                            logger.error(f"   Access to model {base_model_id} is restricted and you are not in the authorized list.")
                            logger.error(f"   Visit https://huggingface.co/{base_model_id} to request access.")
                            logger.error(f"   Error details: {e}")
                            raise RealGatedRepoError(
                                f"Cannot access gated repository {base_model_id}. "
                                f"Visit https://huggingface.co/{base_model_id} to request access."
                            ) from e
                    except ImportError:
                        pass
                
                # If it's not a gated repo error, re-raise as-is
                raise
            
            # Determine quantization config
            if load_in_4bit and self.device == "cuda":
                try:
                    from transformers import BitsAndBytesConfig
                    quantization_config = BitsAndBytesConfig(
                        load_in_4bit=True,
                        bnb_4bit_compute_dtype=torch.float16,
                        bnb_4bit_use_double_quant=True,
                        bnb_4bit_quant_type="nf4"
                    )
                    logger.info("Using 4-bit quantization")
                except ImportError:
                    logger.warning("bitsandbytes not available, loading without quantization")
                    quantization_config = None
            elif load_in_8bit and self.device == "cuda":
                try:
                    quantization_config = {"load_in_8bit": True}
                    logger.info("Using 8-bit quantization")
                except:
                    quantization_config = None
            else:
                quantization_config = None
            
            # Load model with GPU optimization and cache directory
            # Try with quantization first, fallback to no quantization if bitsandbytes fails
            load_kwargs = {
                "cache_dir": self.cache_dir,
                "token": self.hf_token if self.hf_token else None,
                "trust_remote_code": True
            }
            
            if self.device == "cuda":
                # Use explicit device placement to avoid meta device issues
                # device_map="auto" works well with quantization, but can cause issues without it
                load_kwargs.update({
                    "torch_dtype": torch.float16,  # Use FP16 for memory efficiency
                })
                # Only use device_map="auto" with quantization, otherwise use explicit placement
                # This prevents "Tensor on device meta" errors
            
            # Try loading with quantization first
            model = None
            quantization_failed = False
            
            if quantization_config and self.device == "cuda":
                try:
                    if isinstance(quantization_config, dict):
                        load_kwargs.update(quantization_config)
                    else:
                        load_kwargs["quantization_config"] = quantization_config
                    
                    # With quantization, device_map="auto" works correctly
                    load_kwargs["device_map"] = "auto"
                    
                    model = AutoModelForCausalLM.from_pretrained(
                        base_model_id,
                        **load_kwargs
                    )
                    logger.info("βœ“ Model loaded with quantization")
                except (RuntimeError, ModuleNotFoundError, ImportError) as e:
                    error_str = str(e).lower()
                    # Check if error is related to bitsandbytes
                    if "bitsandbytes" in error_str or "int8_mm_dequant" in error_str or "validate_bnb_backend" in error_str:
                        logger.warning(f"⚠ BitsAndBytes error detected: {e}")
                        logger.warning("⚠ Falling back to loading without quantization")
                        quantization_failed = True
                        # Remove quantization config and retry
                        load_kwargs.pop("quantization_config", None)
                        load_kwargs.pop("load_in_8bit", None)
                        load_kwargs.pop("load_in_4bit", None)
                    else:
                        # Re-raise if it's not a bitsandbytes error
                        raise
            
            # If quantization failed or not using quantization, load without it
            if model is None:
                try:
                    if self.device == "cuda":
                        # Without quantization, use explicit device placement to avoid meta device issues
                        # Don't use device_map="auto" here - it can cause tensor placement errors
                        model = AutoModelForCausalLM.from_pretrained(
                            base_model_id,
                            **load_kwargs
                        )
                        # Explicitly move to GPU after loading
                        model = model.to(self.device)
                        logger.info(f"βœ“ Model loaded without quantization on {self.device}")
                    else:
                        load_kwargs.update({
                            "torch_dtype": torch.float32,
                        })
                        model = AutoModelForCausalLM.from_pretrained(
                            base_model_id,
                            **load_kwargs
                        )
                        model = model.to(self.device)
                except Exception as e:
                    # Check if this is a gated repo error (not bitsandbytes)
                    error_str = str(e).lower()
                    if "bitsandbytes" in error_str or "int8_mm_dequant" in error_str:
                        # BitsAndBytes error - should have been caught earlier
                        logger.error(f"❌ Unexpected BitsAndBytes error: {e}")
                        raise RuntimeError(f"BitsAndBytes compatibility issue: {e}") from e
                    
                    # Check for actual gated repo error
                    try:
                        from huggingface_hub.exceptions import GatedRepoError as RealGatedRepoError
                        if isinstance(e, RealGatedRepoError) or "gated" in error_str or "authorized" in error_str:
                            logger.error(f"❌ Gated Repository Error: Cannot access gated repo {base_model_id}")
                            logger.error(f"   Access to model {base_model_id} is restricted and you are not in the authorized list.")
                            logger.error(f"   Visit https://huggingface.co/{base_model_id} to request access.")
                            logger.error(f"   Error details: {e}")
                            raise RealGatedRepoError(
                                f"Cannot access gated repository {base_model_id}. "
                                f"Visit https://huggingface.co/{base_model_id} to request access."
                            ) from e
                    except ImportError:
                        pass
                    
                    # Re-raise other errors as-is
                    raise
            
            # Ensure padding token is set
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
            
            # Cache models (use original model_id for cache key to maintain API compatibility)
            self.loaded_models[model_id] = model
            self.loaded_tokenizers[model_id] = tokenizer
            
            # Log memory usage
            if self.device == "cuda":
                allocated = torch.cuda.memory_allocated(0) / 1024**3
                reserved = torch.cuda.memory_reserved(0) / 1024**3
                logger.info(f"GPU Memory - Allocated: {allocated:.2f} GB, Reserved: {reserved:.2f} GB")
            
            logger.info(f"βœ“ Model {model_id} (base: {base_model_id}) loaded successfully on {self.device}")
            return model, tokenizer
            
        except GatedRepoError:
            # Re-raise GatedRepoError to be handled by caller
            raise
        except Exception as e:
            logger.error(f"Error loading model {model_id}: {e}", exc_info=True)
            raise
    
    def load_embedding_model(self, model_id: str) -> SentenceTransformer:
        """
        Load a sentence transformer model for embeddings.
        
        Args:
            model_id: HuggingFace model identifier
        
        Returns:
            SentenceTransformer model
        """
        if model_id in self.loaded_embedding_models:
            logger.info(f"Embedding model {model_id} already loaded, reusing")
            return self.loaded_embedding_models[model_id]
        
        try:
            logger.info(f"Loading embedding model {model_id}...")
            
            # Strip API-specific suffixes for local loading
            base_model_id = model_id.split(':')[0] if ':' in model_id else model_id
            if base_model_id != model_id:
                logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
            
            # SentenceTransformer automatically handles GPU
            # Note: SentenceTransformer uses cache_dir from environment or default location
            # We can't directly pass cache_dir, but we've set HF_HOME and TRANSFORMERS_CACHE
            try:
                model = SentenceTransformer(
                    base_model_id,
                    device=self.device
                )
            except GatedRepoError as e:
                logger.error(f"❌ Gated Repository Error: Cannot access gated repo {base_model_id}")
                logger.error(f"   Access to model {base_model_id} is restricted and you are not in the authorized list.")
                logger.error(f"   Visit https://huggingface.co/{base_model_id} to request access.")
                logger.error(f"   Error details: {e}")
                raise GatedRepoError(
                    f"Cannot access gated repository {base_model_id}. "
                    f"Visit https://huggingface.co/{base_model_id} to request access."
                ) from e
            
            # Cache model (use original model_id for cache key)
            self.loaded_embedding_models[model_id] = model
            
            logger.info(f"βœ“ Embedding model {model_id} (base: {base_model_id}) loaded successfully on {self.device}")
            return model
            
        except GatedRepoError:
            # Re-raise GatedRepoError to be handled by caller
            raise
        except Exception as e:
            logger.error(f"Error loading embedding model {model_id}: {e}", exc_info=True)
            raise
    
    def generate_text(
        self,
        model_id: str,
        prompt: str,
        max_tokens: int = 512,
        temperature: float = 0.7,
        **kwargs
    ) -> str:
        """
        Generate text using a loaded chat model.
        
        Args:
            model_id: Model identifier
            prompt: Input prompt
            max_tokens: Maximum tokens to generate
            temperature: Sampling temperature
        
        Returns:
            Generated text
        """
        if model_id not in self.loaded_models:
            raise ValueError(f"Model {model_id} not loaded. Call load_chat_model() first.")
        
        model = self.loaded_models[model_id]
        tokenizer = self.loaded_tokenizers[model_id]
        
        try:
            # Tokenize input
            inputs = tokenizer(prompt, return_tensors="pt").to(self.device)
            
            # Prepare generation kwargs
            generation_kwargs = {
                "max_new_tokens": max_tokens,
                "temperature": temperature,
                "do_sample": True,
                "pad_token_id": tokenizer.pad_token_id,
                "eos_token_id": tokenizer.eos_token_id,
            }
            
            # Add compatibility fix for Phi-3 DynamicCache issues
            # Phi-3 models may use DynamicCache which doesn't have seen_tokens in some versions
            if "phi" in model_id.lower() or "phi3" in model_id.lower() or "phi-3" in model_id.lower():
                # Use cache=False as workaround for DynamicCache.seen_tokens AttributeError
                generation_kwargs["use_cache"] = False
                logger.debug(f"Using use_cache=False for Phi-3 model to avoid DynamicCache compatibility issues")
            
            # Merge additional kwargs (may override above settings)
            generation_kwargs.update(kwargs)
            
            # Generate
            with torch.no_grad():
                outputs = model.generate(
                    **inputs,
                    **generation_kwargs
                )
            
            # Decode
            generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Remove prompt from output if present
            if generated_text.startswith(prompt):
                generated_text = generated_text[len(prompt):].strip()
            
            return generated_text
            
        except AttributeError as e:
            # Handle DynamicCache.seen_tokens AttributeError specifically
            if "seen_tokens" in str(e) or "DynamicCache" in str(e):
                logger.warning(f"DynamicCache compatibility issue detected ({e}), retrying without cache")
                try:
                    # Retry without cache to avoid DynamicCache issues
                    with torch.no_grad():
                        outputs = model.generate(
                            **inputs,
                            max_new_tokens=max_tokens,
                            temperature=temperature,
                            do_sample=True,
                            use_cache=False,  # Disable cache to avoid DynamicCache issues
                            pad_token_id=tokenizer.pad_token_id,
                            eos_token_id=tokenizer.eos_token_id,
                            **{k: v for k, v in kwargs.items() if k != "use_cache"}  # Remove use_cache from kwargs
                        )
                    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
                    if generated_text.startswith(prompt):
                        generated_text = generated_text[len(prompt):].strip()
                    logger.info("βœ“ Generation successful after DynamicCache workaround")
                    return generated_text
                except Exception as retry_error:
                    logger.error(f"Retry without cache also failed: {retry_error}", exc_info=True)
                    raise RuntimeError(f"Generation failed even with cache disabled: {retry_error}") from retry_error
            # Re-raise if it's a different AttributeError
            raise
        except Exception as e:
            logger.error(f"Error generating text: {e}", exc_info=True)
            raise
    
    def generate_chat_completion(
        self,
        model_id: str,
        messages: list,
        max_tokens: int = 512,
        temperature: float = 0.7,
        **kwargs
    ) -> str:
        """
        Generate chat completion using a loaded model.
        
        Args:
            model_id: Model identifier
            messages: List of message dicts with 'role' and 'content'
            max_tokens: Maximum tokens to generate
            temperature: Sampling temperature
        
        Returns:
            Generated response
        """
        if model_id not in self.loaded_models:
            raise ValueError(f"Model {model_id} not loaded. Call load_chat_model() first.")
        
        model = self.loaded_models[model_id]
        tokenizer = self.loaded_tokenizers[model_id]
        
        try:
            # Format messages as prompt
            if hasattr(tokenizer, 'apply_chat_template'):
                # Use chat template if available
                prompt = tokenizer.apply_chat_template(
                    messages,
                    tokenize=False,
                    add_generation_prompt=True
                )
            else:
                # Fallback: simple formatting
                prompt = "\n".join([
                    f"{msg['role']}: {msg['content']}"
                    for msg in messages
                ]) + "\nassistant: "
            
            # Generate
            return self.generate_text(
                model_id=model_id,
                prompt=prompt,
                max_tokens=max_tokens,
                temperature=temperature,
                **kwargs
            )
            
        except Exception as e:
            logger.error(f"Error generating chat completion: {e}", exc_info=True)
            raise
    
    def get_embedding(self, model_id: str, text: str) -> list:
        """
        Get embedding vector for text.
        
        Args:
            model_id: Embedding model identifier
            text: Input text
        
        Returns:
            Embedding vector
        """
        if model_id not in self.loaded_embedding_models:
            raise ValueError(f"Embedding model {model_id} not loaded. Call load_embedding_model() first.")
        
        model = self.loaded_embedding_models[model_id]
        
        try:
            embedding = model.encode(text, convert_to_numpy=True)
            return embedding.tolist()
        except Exception as e:
            logger.error(f"Error getting embedding: {e}", exc_info=True)
            raise
    
    def clear_cache(self):
        """Clear all loaded models from memory."""
        logger.info("Clearing model cache...")
        
        # Clear models
        for model_id in list(self.loaded_models.keys()):
            del self.loaded_models[model_id]
        for model_id in list(self.loaded_tokenizers.keys()):
            del self.loaded_tokenizers[model_id]
        for model_id in list(self.loaded_embedding_models.keys()):
            del self.loaded_embedding_models[model_id]
        
        # Clear GPU cache
        if self.device == "cuda":
            torch.cuda.empty_cache()
        
        logger.info("βœ“ Model cache cleared")
    
    def get_memory_usage(self) -> Dict[str, float]:
        """Get current GPU memory usage in GB."""
        if self.device != "cuda":
            return {"device": "cpu", "gpu_available": False}
        
        return {
            "device": self.device_name,
            "gpu_available": True,
            "allocated_gb": torch.cuda.memory_allocated(0) / 1024**3,
            "reserved_gb": torch.cuda.memory_reserved(0) / 1024**3,
            "total_gb": torch.cuda.get_device_properties(0).total_memory / 1024**3
        }