A newer version of the Gradio SDK is available:
6.1.0
title: Intelligent Documentation Generator Agent
colorFrom: blue
colorTo: purple
sdk: gradio
python_version: 3.11
sdk_version: 5.49.1
app_file: app.py
short_description: Generate documentation and chat with code
tags:
- documentation
- code-assistant
- large-language-model
- fire-works-ai
models:
- accounts/fireworks/models/glm-4p6
pinned: false
๐ง Intelligent Documentation Generator Agent
Built with GLM-4.6 on Fireworks AI and Gradio
๐ Overview
The Intelligent Documentation Generator Agent automatically generates structured, multi-layer documentation and provides a chat interface to explore Python codebases. This version is powered by GLM-4.6 via the Fireworks AI Inference API and implemented in Gradio, offering a lightweight, interactive browser-based UI.
Capabilities:
- Analyze Python files from uploads, pasted code, or GitHub links
- Generate consistent, well-structured documentation (overview, API breakdown, usage examples)
- Chat directly with your code to understand logic, dependencies, and optimization opportunities
โ๏ธ Architecture
User (Upload / Paste / GitHub)
โ
โผ
Gradio UI (Tabs)
โโโโโโโโโโโโโโโโโโโโโโโ
โ Documentation Tab โโโโบ Fireworks GLM-4.6 โ Markdown Docs
โ Chat Tab โโโโบ Fireworks GLM-4.6 โ Q&A Responses
โโโโโโโโโโโโโโโโโโโโโโโ
๐งฉ Core Features
๐ Documentation Generator
Input via:
- Pasted Python code
- Uploaded
.pyfile - GitHub file link (supports automatic conversion to raw URL)
Produces:
- Overview and purpose
- Key functions/classes with signatures
- Dependencies and relationships
- Example usage and improvement suggestions
Outputs documentation in Markdown
๐ฌ Code Chatbot
- Conversational Q&A with the analyzed code
- References exact functions and dependencies
- Maintains interactive chat history using Gradioโs
Chatbotcomponent - Uses the same GLM-4.6 model context for accurate answers
๐งฑ Tech Stack
| Layer | Technology |
|---|---|
| Model | GLM-4.6 on Fireworks AI |
| UI Framework | Gradio |
| Language | Python 3.9+ |
| HTTP Requests | requests |
| Deployment | Localhost / Containerized environments |
๐ Installation
1. Clone the Repository
git clone https://github.com/<your-username>/intelligent-doc-agent.git
cd intelligent-doc-agent
2. Install Dependencies
pip install gradio requests
3. Configure Fireworks API Key
Set your API key as an environment variable:
export FIREWORKS_API_KEY="your_fireworks_api_key"
Alternatively, enter your API key directly in the UI when prompted.
4. Run the Application
python app_gradio.py
Then visit http://127.0.0.1:7860 in your browser.
๐ก Usage Guide
๐ง Generate Documentation
Open the ๐ Generate Documentation tab.
Choose an input mode:
- Paste code into the text area
- Upload a
.pyfile - Enter a GitHub file link (e.g.,
https://github.com/.../file.py)
Click ๐ Generate Documentation to process your file.
View formatted Markdown output instantly.
๐ฌ Chat with Code
- Switch to the ๐ฌ Chat with Code tab.
- Ask questions about your code (e.g., โWhat does this function do?โ or โHow can I improve performance?โ).
- The model responds contextually, referencing the uploaded file.
๐ง Model Integration Example
payload = {
"model": "accounts/fireworks/models/glm-4p6",
"max_tokens": 4096,
"temperature": 0.6,
"messages": messages
}
response = requests.post(
"https://api.fireworks.ai/inference/v1/chat/completions",
headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
data=json.dumps(payload)
)
print(response.json()["choices"][0]["message"]["content"])
๐ฆ Project Structure
.
โโโ app.py # Main Gradio interface
โโโ README.md # Project documentation
โโโ requirements.txt # Dependencies (gradio, requests)
๐ฎ Future Enhancements
- Multi-file repository analysis with hierarchical context summarization
- Semantic vector store (Chroma / Pinecone) for persistent knowledge retrieval
- Multi-agent orchestration using LangGraph or MCP protocols
- Continuous documentation updates via Git hooks or CI/CD pipelines
๐งพ Example
Input
def calculate_mean(numbers):
return sum(numbers) / len(numbers)
Output
### Function: calculate_mean
Computes the arithmetic mean of a numeric list.
**Parameters:**
- numbers (list): Sequence of numbers to average.
**Returns:**
- float: Mean of the list.
**Usage Example:**
>>> calculate_mean([1, 2, 3, 4])
2.5
Chat Example
โHow can I modify this to avoid division by zero errors?โ
๐ Best Practices
- Use raw GitHub links (
https://raw.githubusercontent.com/...) for accurate file fetches. - Limit input size (~4k tokens) for optimal latency and context accuracy.
- Keep your API key private โ never commit it in source files.
๐งญ License
Released under