aisrini's picture
Update README.md
91126b5 verified
---
title: Intelligent Documentation Generator Agent
colorFrom: blue
colorTo: purple
sdk: gradio
python_version: 3.11
sdk_version: 5.49.1
app_file: app.py
short_description: Generate documentation and chat with code
tags:
- documentation
- code-assistant
- large-language-model
- fire-works-ai
models:
- accounts/fireworks/models/glm-4p6
pinned: false
---
# ๐Ÿง  Intelligent Documentation Generator Agent
Built with **GLM-4.6 on Fireworks AI** and **Gradio**
---
## ๐Ÿ“˜ Overview
The **Intelligent Documentation Generator Agent** automatically generates structured, multi-layer documentation and provides a chat interface to explore Python codebases.
This version is powered by **GLM-4.6** via the **Fireworks AI Inference API** and implemented in **Gradio**, offering a lightweight, interactive browser-based UI.
**Capabilities:**
* Analyze Python files from uploads, pasted code, or GitHub links
* Generate consistent, well-structured documentation (overview, API breakdown, usage examples)
* Chat directly with your code to understand logic, dependencies, and optimization opportunities
---
## โš™๏ธ Architecture
```
User (Upload / Paste / GitHub)
โ”‚
โ–ผ
Gradio UI (Tabs)
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Documentation Tab โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Markdown Docs
โ”‚ Chat Tab โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Q&A Responses
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```
---
## ๐Ÿงฉ Core Features
### ๐Ÿ“„ Documentation Generator
* Input via:
* Pasted Python code
* Uploaded `.py` file
* GitHub file link (supports automatic conversion to raw URL)
* Produces:
* Overview and purpose
* Key functions/classes with signatures
* Dependencies and relationships
* Example usage and improvement suggestions
* Outputs documentation in Markdown
### ๐Ÿ’ฌ Code Chatbot
* Conversational Q&A with the analyzed code
* References exact functions and dependencies
* Maintains interactive chat history using Gradioโ€™s `Chatbot` component
* Uses the same GLM-4.6 model context for accurate answers
---
## ๐Ÿงฑ Tech Stack
| Layer | Technology |
| ----------------- | ----------------------------------------------- |
| **Model** | [GLM-4.6](https://fireworks.ai) on Fireworks AI |
| **UI Framework** | [Gradio](https://gradio.app) |
| **Language** | Python 3.9+ |
| **HTTP Requests** | `requests` |
| **Deployment** | Localhost / Containerized environments |
---
## ๐Ÿš€ Installation
### 1. Clone the Repository
```bash
git clone https://github.com/<your-username>/intelligent-doc-agent.git
cd intelligent-doc-agent
```
### 2. Install Dependencies
```bash
pip install gradio requests
```
### 3. Configure Fireworks API Key
Set your API key as an environment variable:
```bash
export FIREWORKS_API_KEY="your_fireworks_api_key"
```
> Alternatively, enter your API key directly in the UI when prompted.
### 4. Run the Application
```bash
python app_gradio.py
```
Then visit **[http://127.0.0.1:7860](http://127.0.0.1:7860)** in your browser.
---
## ๐Ÿ’ก Usage Guide
### ๐Ÿง  Generate Documentation
1. Open the **๐Ÿ“„ Generate Documentation** tab.
2. Choose an input mode:
* Paste code into the text area
* Upload a `.py` file
* Enter a GitHub file link (e.g., `https://github.com/.../file.py`)
3. Click **๐Ÿš€ Generate Documentation** to process your file.
4. View formatted Markdown output instantly.
### ๐Ÿ’ฌ Chat with Code
1. Switch to the **๐Ÿ’ฌ Chat with Code** tab.
2. Ask questions about your code (e.g., โ€œWhat does this function do?โ€ or โ€œHow can I improve performance?โ€).
3. The model responds contextually, referencing the uploaded file.
---
## ๐Ÿง  Model Integration Example
```python
payload = {
"model": "accounts/fireworks/models/glm-4p6",
"max_tokens": 4096,
"temperature": 0.6,
"messages": messages
}
response = requests.post(
"https://api.fireworks.ai/inference/v1/chat/completions",
headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
data=json.dumps(payload)
)
print(response.json()["choices"][0]["message"]["content"])
```
---
## ๐Ÿ“ฆ Project Structure
```
.
โ”œโ”€โ”€ app.py # Main Gradio interface
โ”œโ”€โ”€ README.md # Project documentation
โ””โ”€โ”€ requirements.txt # Dependencies (gradio, requests)
```
---
## ๐Ÿ”ฎ Future Enhancements
* **Multi-file repository analysis** with hierarchical context summarization
* **Semantic vector store** (Chroma / Pinecone) for persistent knowledge retrieval
* **Multi-agent orchestration** using LangGraph or MCP protocols
* **Continuous documentation updates** via Git hooks or CI/CD pipelines
---
## ๐Ÿงพ Example
**Input**
```python
def calculate_mean(numbers):
return sum(numbers) / len(numbers)
```
**Output**
```markdown
### Function: calculate_mean
Computes the arithmetic mean of a numeric list.
**Parameters:**
- numbers (list): Sequence of numbers to average.
**Returns:**
- float: Mean of the list.
**Usage Example:**
>>> calculate_mean([1, 2, 3, 4])
2.5
```
**Chat Example**
> โ€œHow can I modify this to avoid division by zero errors?โ€
---
## ๐Ÿ” Best Practices
* Use **raw GitHub links** (`https://raw.githubusercontent.com/...`) for accurate file fetches.
* Limit input size (~4k tokens) for optimal latency and context accuracy.
* Keep your **API key** private โ€” never commit it in source files.
---
## ๐Ÿงญ License
Released under